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A B S T R A C T

China has implemented three sets of low-carbon city pilot policies (LCCP), making it the world’s most extensive 
low-carbon and green development program. Many studies have examined the impact of this policy on green 
development. However, studies rarely discuss spillover effects. This deficiency can lead to biased policy evalu-
ations. This study employs a quasi-experimental approach to investigate the spillover effects of LCCP on the 
green total factor productivity (GTFP) of neighboring non-pilot cities and identify the underlying mechanisms. 
Using panel data from 283 cities in China spanning from 2004 to 2020, this study employs the time-varying 
difference-in-difference method. The empirical evidence suggests that LCCP can significantly enhance the 
GTFP growth of non-pilot cities located within 100 km, with an average annual increase of approximately 1.43%. 
Mechanism analysis indicates that increasing technological innovation and learning from the pacesetter play 
crucial intermediary roles in promoting GTFP improvements in neighboring cities. Furthermore, the spillover 
effects exhibit noticeable heterogeneity, particularly among cities in the eastern region, middle region, and large 
cities. These findings provide empirical evidence regarding the spillover effects of China’s largest carbon pilot 
policies, contributing to a comprehensive assessment of policy impacts and offering fresh insights for climate 
policy tools.

1. Introduction

Green development, which involves achieving economic growth 
through environmental sustainability, has long been considered a crit-
ical aspect of global sustainable development (Zhang and Wen, 2008). 
The concept emphasizes integrated management, scientific allocation, 
and comprehensive conservation and recycling of resources, effectively 
resolving the conflict between economic growth and environmental 
conservation. With carbon emissions increasing dramatically since the 
turn of the century, China has actively promoted green development as 
climate change has become an urgent global issue(Mi and Sun, 2021). 
China’s 20th National Congress in 2022 once again elevated green 
development as a priority for achieving a low-carbon transition and 
high-quality economic development. In this context, green development 
has garnered unprecedented attention in China’s academia.

Cities make significant contributions to national economic develop-
ment, but they are also major sources of pollution. In 2021, the “Opin-
ions on Promoting Green Development of Urban and Rural 
Construction” issued by the central government underscored the 

importance of green development in cities to reduce emissions. China’s 
government has devoted considerable efforts towards city-based green 
growth, including the large-scale and pioneering Low-carbon City Pilot 
(LCCP) policy.

According to Tobler’s First Law of Geography, everything is inter-
connected, but closer things are more related than further away (Tobler, 
2004). This phenomenon is especially evident in the context of envi-
ronmental regulation. Due to externalities, a city inevitably benefits 
from the environmental policies of neighboring cities or incurs addi-
tional costs from such policies (Case et al., 1993; Ertmer, 1996). For 
example, local governments may adopt similar environmental standards 
from other regions to capitalize on external benefits, such as access to 
foreign markets and attracting foreign investments (Faber and Gerritse, 
2012). Environmental policies also have negative externalities. Strict 
environmental regulations can improve green development in one pilot 
city, while the inflow of polluting industries and the outflow of inno-
vation resources (siphoned off from the pilot city) may cause green 
development in surrounding cities to decline (Chen and Wang, 2022). 
Our research objective is to identify whether and how LCCPs affect 
neighboring non-pilot cities’ green development. Our focus is on the 
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non-pilot cities in this issue, which explores the externalities of China’s 
pilot reform.

Academics have extensively studied the impact of the LCCP policy on 
urban green development since its nationwide implementation. Most 
studies have revealed that LCCP policies have contributed to green 
development in pilot cities (Cheng et al., 2019; Fu et al., 2021; Qiu et al., 
2021; Wang et al., 2023c; Zhang et al., 2022a). For example, Qiu et al. 
(2021) used a quasi-natural experiment approach and found that LCCP 
policies increased green total factor productivity (GTFP) by approxi-
mately 5.5%. Zhang et al. (2022a) demonstrated that the LCCP policy 
could increase GTFP by decreasing the scale effect, enhancing the 
structural effect, and promoting innovation. Fu et al. (2021) and Wang 
et al. (2023a) found that the effects of the LCCP policy on GTFP in pilot 
cities were heterogeneous across city types (such as size, location, and 
resource endowment). Additionally, GTFP in pilot cities improved 
through various mediating mechanisms, such as innovation, enhance-
ment of industrial structure, and optimization of industrial structure and 
resource allocation. There are also several studies contend that the LCCP 
failed to reduce carbon emissions due to unclear development objectives 
(Lo, 2014; Zhou and Zhou, 2021).

However, these studies focused primarily on the direct impact of 
LCCPs on green development in pilot cities, with few examining the 
spatial spillover effect. To our knowledge, only a few previous studies in 
the literature have examined the spillover effects of LCCP on green 
development by using spatial difference-in-difference (SDID) model 
(Chen and Wang, 2022; Wang et al., 2023a). These studies evaluate the 
average spillover effect (both on pilot and non-pilot cities) and failed to 
provide conclusive evidence about the influence of the LCCP on the 
green development of neighboring non-pilot cities. Moreover, selecting 
the optimal matrix remains an unresolved issue in the SDID model, and 
inappropriate decision-making can result in biased coefficient 
estimations.

To reveal the spillover effect of the LCCP on non-pilot cities’ green 
development, this paper utilizes panel data for 283 Chinese cities from 
2004 to 2020 and employs a time-varying difference-in-differences 
(DID) model. The contribution is threefold. Firstly, we extend the 
concept of policy evaluation to the perspective of the spillover effect, 
thereby overcoming the limitations of existing research, which largely 
focuses on local effects. Secondly, we contribute to empirical research by 
employing the time-varying DID model to estimate the spillover effect, 
which can capture the effect to neighboring non-pilot cities. Compared 
to the SDID model, this study not only allows a more refined analysis of 
policy spillovers, but also mitigates the selection bias associated with the 
optimal matrix methodologically. The third contribution of this study is 
to identify a new mechanism of spillover effect. Compared to innovation 
development levels, innovation factor flows can offer a more reasonable 
explanation of policy effect that across administrative boundaries.

This study is organized as follows: Section 2 discusses the research 

background and hypotheses, Section 3 describes the research method-
ology, and Section 4 reports the empirical results and conducts robust-
ness analysis. Section 5 delves into the mechanism analysis and 
heterogeneous analysis, and the final section is the conclusion and 
policy recommendations.

2. Policy background and research hypothesis

2.1. China’s low-carbon city pilot policy

Due to accelerated urbanization and industrialization, which have 
increased fossil fuel consumption, cities have assumed greater re-
sponsibilities in transitioning to a green economy and addressing 
climate change (Wang et al., 2018). In the 11th Five-Year Plan (FYP), 
carbon reduction was initially established as a binding target for per-
formance evaluation. To achieve this goal, China launched three batches 
of LCCP policies to meet its carbon reduction targets in 2010, 2012 and 
2017.

In 2010, the National Development and Reform Commission (NDRC) 
initiated the first set of pilot areas, encompassing five provinces, two 
municipalities and six prefecture-level cities (see Appendix A), which 
collectively accounted for 54.16% of the nation’s carbon emissions 
(Chen et al., 2021). The CO2 emissions of pilot cities decreased by 88.9% 
in 2010–2011 compared with other cities in the same province (Chen 
et al., 2021). In the subsequent two years, green development was 
elevated to a national strategy for building a “Beautiful China”, and 29 
additional areas extended the second batch of pilot regions. Following 
the success of the first two pilot batches, a third batch was launched with 
a focus on innovation. An additional 45 pilot areas were included as part 
of the policy framework of the National Plan to Address Climate Change 
(2014–2020) and the 13th FYP to control greenhouse gas emissions. 
These pilot cities were tasked with providing practical experiences and 
developing replicable and scalable practices for non-pilot cities.

The government conducted low-carbon city pilots in several key 
areas. First, it aimed to achieve industrial restructuring and the 
upgrading of cities by transforming the functions of urban industriali-
zation into low-carbon, circular development models. A second objec-
tive was to encourage pilot regions to adjust their energy structure by 
replacing coal with green and renewable energy sources, thereby 
enhancing green productivity. The third aim was to promote public 
transportation, especially electric buses, to develop a low-carbon urban 
transportation system. Fourth, it encouraged the construction of green 
buildings that consider the need to provide people with healthy, suit-
able, and energy-efficient spaces. Additionally, a greenhouse gas sta-
tistics system was established to support macro-environmental 
regulation.

Cities in this study include municipalities and prefectural-level cities. 
Fig. 1 displays the geographical distribution of the three pilot city 
batches. Among our sample of 283 cities, 27 pilot cities were located in 
the eastern region, 18 pilot cities in the central region, 20 pilot cities in 
the western region, and 4 pilot cities in the northeastern region, repre-
senting 39%, 26%, 29%, and 6% of the total number, respectively. 
Furthermore, we can conclude that the number of pilot cities in the 
eastern region exceeds that in other regions. Possible reasons for this 
discrepancy may include higher levels of production activities and 
greater population densities in the eastern part. Moreover, some cities in 
the pilot provinces are excluded from the pilot group because they aren’t 
on the pilot list and haven’t adopted low-carbon pilot strategies as the 
pilot cities.

2.2. Research hypothesis

The LCCP can influence local green development and simultaneously 
impact the green development of neighboring non-pilot cities. This 
mechanism connects these cities’ efficiency performance. A possible 
demonstration effect is that, the surrounding non-pilot cities may be 

List of abbreviations:

LCCP Low-carbon City Pilot
SBM-DDF Slack-based measured directional distance function
GTFP Green total factor productivity
SDID Spatial difference-in-differences
FYP Five-Year Plan
NDRC National Development and Reform Commission
GLPI Global Luenberger productivity indicator
DMU Decision-making unit
BPC Best practice change
PEC Pure efficiency change
SEC Scale efficiency change
SDM Spatial Durbin model
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influenced by the pilot policy by political and economic linkages, sub-
sequently affecting the green development(Sun et al., 2022). Addition-
ally, the “First Law of Geography” emphasizes the critical role of 
geographic proximity; that is, spillover effects are subject to a distance 
threshold. The first explanation is that greater geographical distance 
increases learning and communication costs and results in information 
asymmetry, thereby reducing the spillover effects of the LCCP (Zhu and 
Lee, 2022). Secondly, resource flow is limited due to administrative 
barriers, transaction costs, and local protectionism (Liu et al., 2022), 
which further contribute to spillover thresholds.

Therefore, this paper proposes the central hypothesis of spatial 
spillover (H1). 

Hypothesis 1. LCCP impacts the green development of non-pilot cities 
within a certain distance threshold.

The environmental policies impact the green development of 
neighbors, as institutional differences trigger the flow of spatial factors 
(Álvarez et al., 2018; Sun et al., 2022). According to the LCCP policy, 
pilot cities should disseminate innovative experiences and measures 
nationwide, implying that the innovation factor can transfer from pilot 
cities to surrounding non-pilot cities (Song et al., 2018b). Empirically, 
innovation is often rooted in other carriers (e.g., capital, labor, knowl-
edge), and the free flow of these carriers due to market signals can 
explain spatial innovation spillovers (Almeida and Kogut, 1999; Los and 
Verspagen, 2000). For example, Bottazzi and Peri (2003) found that a 
region’s innovation performance is affected by nearby R&D in-
vestments. Peri (2005) and Cabrer-Borrás and Serrano-Domingo (2007)
demonstrate that the diffusion of knowledge and ideas enhances the 
innovation of less developed regions in proximity. This finding is further 
reinforced by Zhai and An (2021) and Gao and Yuan (2022), who use 
China as a case study to prove that technology commercialization exerts 

significant positive effects on green transformation efficiency in neigh-
boring provinces and the spillover effect conforms to the distance 
attenuation law. Shang et al. (2012) contend that exchanging labor and 
capital between regions enhances the knowledge of differentiated green 
products, resulting in endogenous development. In short, spatial spill-
overs occur when neighboring non-pilot cities absorb innovative capital, 
labor, knowledge, and ideas from pilot cities.

Given the realities of indigenous development in China, this study 
includes two major carriers to measure the innovation spillover effect 
(Shang et al., 2012). These are R&D capital and R&D labor. For one 
thing, R&D capital was positively related to innovation capability, 
alleviating financial stress for high-tech enterprises and stimulating 
technological progress. Another reason is that high-skilled R&D immi-
grants can explain China’s innovation development in the post-reform 
years because skilled workers, such as scientists and engineers, are 
equipped with the knowledge to conduct innovative research and pro-
duction (Fei, 2017). Therefore, this study identifies the mechanism of 
spatial spillover as the innovation effect. 

Hypothesis 2-a. The LCCPs promote the flow of R&D capital factors, 
creating positive innovation spillovers and contributing to green 
development.

Hypothesis 2-b. The LCCPs promote the flow of R&D labor factors, 
creating positive innovation spillovers and contributing to green 
development.

LCCP policies reduce energy consumption by adjusting the industrial 
structure. They will gradually phase out traditional pollution-intensive 
industries in favor of emerging green and low-carbon industries. These 
emerging industries are high-tech, low-polluting, and low-energy- 
intensive, reducing carbon emissions, enhancing urban productivity, 
and improving regional green development. This will also impact the 

Fig. 1. Geographical distribution of the pilot area in three batches of LCCP policy.
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structural transition of surrounding non-pilot cities (Chen and Wang, 
2022). Therefore, this study formulates the mechanism of spatial spill-
over (H3) of LCCP. 

Hypothesis 3. The LCCPs promote neighboring green development 
through the industrial structure effect.

The spatial correlation also reveals that LCCPs influence the sur-
rounding cities’ green development through policy learning. With the 
inclusion of green development in the performance evaluation system 
for government officials, local policy learning is crucial to reduce costs 
of low-carbon development, and the governors of non-pilot cities have 
an enormous incentive to learn from the pilot cities about carbon 
regulation(Irwin and Klenow, 1994). This is because policy success in 
pilot cities is a legitimacy signal that prompts other cities to adopt and 
imitate the successful experience of pioneers with fewer costs and risks. 
For instance, it is documented that officials adopted Huzhou’s innova-
tive “Hezhang” policy following significant improvements in water 
quality during water pollution control (Liu and Richards, 2019). Several 
studies have shown that local learning may be interactive, involve 
proximity, require tacit knowledge, and be supported by a strong local 
experience base. Additionally, the role of spatial proximity in local 
policy learning is emphasized, along with face-to-face communication, 
networks, knowledge spillover, and pooled resources(Roper and Love, 
2018). Therefore, this study formulates the mechanism of spatial spill-
over of LCCP. 

Hypothesis 4. The LCCPs promote neighboring green development 
through the learning effect.

Based on the above discussion, Fig. 2 illustrates the four underlying 
hypotheses.

3. Research design and methodology

3.1. Green development

One of the challenges is measuring green development. The earliest 
measurement involves constructing a comprehensive index that can 
analyze green development from various perspectives (Ge et al., 2023; 
Hu and Zhou, 2014). The second and most widely used approach em-
ploys the concept of productivity, calculated using the data envelopment 
analysis (DEA) methodology. For instance, Qiu et al. (2021) utilized the 
slack-based measured directional distance function (SBM-DDF) and 
Luenberger productivity index method to calculate GTFP, while Wang 
et al. (2021a) employed the undesired output-super-efficiency SBM 
model. A third approach describes green development based on some of 
its core drivers. As an example, Wang et al. (2023c) asserted that digital 
economy growth can serve as a measure of green development because it 
drives green public affairs, green production activity, resulting in 
innovative approaches and feasible pathways. As stated by Zhang et al. 
(2021) green credit is one of the most significant green financial 

instruments, as it can reduce pollution emissions and facilitate the 
financing of green enterprises.

This study uses the second method of the productivity concept for 
several reasons. First, GTFP is a vital index for evaluating the synergistic 
effect of economic growth and carbon reduction. It aims to maximize 
output while minimizing emissions based on the required input factors, 
aligning with the requirements of sustainable development (Young, 
2003). Second, instead of relying on the single input that generates GDP, 
GTFP incorporates multiple factors, such as capital, labor, and energy, 
providing more accurate estimates than a single indicator measure (Sun 
et al., 2022). Third, it is widely recognized that GTFP is a critical engine 
for green development in macro planning. As indicated at the 20th 
National Congress of the Communist Party of China, increasing GTFP is 
the most crucial solution for developing a low-carbon, sustainable, and 
environmentally friendly economic system.

1. Green total factor productivity growth estimation

(1) Directional distance function approach

This study estimates GTFP growth for each city using the DEA 
method, a nonparametric frontier method proposed by Charnes et al. 
(1978) and Banker et al. (1984). The DEA approach can estimate pro-
duction frontiers considering various inputs and outputs without making 
any prior assumptions about the production function’s form. The effi-
ciency of each decision-making unit (DMU) is evaluated based on the 
relative distance (i.e., inefficiency) from the estimated production 
frontier to each DMU (Ogata et al., 2023).

The DEA-type directed distance function (DDF) approach, which can 
account for undesirable outputs that traditional DEA models cannot, is 
suitable for GTFP growth estimation (Nakaishi et al., 2023). The vector 
of inputs, desirable inputs, and undesirable outputs in a city’s produc-
tion activities are x = (x1,…,xk) ∈ R

K
+, y =

(
y1,…,yl

)
∈ R

L
+, and b =

(b1, …, bm) ∈ R
M
+ , respectively. The production technology P(x) is 

defined as: 

P(x)= {(y, b) : x can produce (y, b)}. (1) 

The DDF D→(x,y,b), the inefficiency of each city, is defined based on 
the distance (β) from the production frontier formed by the efficient 
DMUs (i.e., cities) as: 

D→(x, y, b)= Sup
{

β :
(

y+ βgy, b − βgb

)
∈P(x)

}
, (2) 

where gy and gb are the directional vectors of desirable and undesirable 
outputs, respectively.

Setting the direction vector g
(

gy, gb

)
to g

(
gy,gb

)
= (y, − b), the DDF 

for city i Di
→
(x, y, b) can be estimated by solving the following linear 

programming problem: 

Dt
→
(

xi, yi, bi; gy, gb

)
=Maximize βi,

s. t. 

∑N

n=1
λnxkn ≤ xki, k = 1,2,…,K 

∑N

n=1
λnyln ≥ yli(1+ βi), l=1, 2,…, L 

∑N

n=1
λnbmn ≤ bmi(1 − βi),m= 1,2,…,M 

λn ≥0, n = 1,2,…,N, (3) Fig. 2. Hypothesis framework of the spillover effect of the LCCP on green 
development. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.)
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where xki, yli, and bmi refer to the k th input, l th desirable output, and m 
th undesirable output of city i, respectively. n denotes the number of 
cities (N = 283). λn is the weight variable for the n th city. Eq. (3) as-
sumes constant returns to scale. Adding constraint (

∑N
n=1 λn = 1) to the 

equation, this can be converted to a model assuming variable returns to 
scale (VRS).

(2) Global Luenberger productivity indicator

The GTFP growth in a given city was measured based on changes in 
DDF over the two periods. The global Luenberger productivity indicator 
(GLPI) proposed by Wang et al., 2016 can overcome the infeasibility 
problem of traditional Luenberger productivity indicators (LPI). There-
fore, GLPI was adopted in this study as an indicator of GTFP growth in 
cities. The GTFP growth of city i from years t to s (GTFPt,s

i ) is defined by 
the following equation: 

GTFPt,s
i =Di

→G(
xt , yt , bt) − Di

→G
(xs, ys, bs), (4) 

where Di
→G(

xt , yt , bt) and Di
→G

(xs, ys, bs) are the DDFs of city i in year t and 
year s, respectively, which are measured based on a “global” frontier 

formed from all observations in all time periods. Specifically, Di
→G

(x, y, b)
can be estimated using Eq. (3) by considering observations from 2003 to 
2020 for 283 cities (a total of 5096 samples) as different DMUs.

Following Wang et al. (2021b), GTFP growth (GTFPt,s
i ) can be further 

decomposed as the sum of the three sources of efficiency change: best 
practice change (BPCt,s

i ), pure efficiency change (PECt,s
i ), and scale effi-

ciency change (SECt,s
i ), as follows: 

GTFPt,s
i =BPCt,s

i + PECt,s
i + SECt,s

i . (5) 

Specifically, BPCt,s
i represents the frontier shift effect, PECt,s

i repre-
sents the catch-up efficiency effect, and SECt,s

i represents the scale 
optimization effect. The BPCt,s

i , PECt,s
i , and SECt,s

i can be estimated from 
each of the following equations: 

BPCt,s
i =

[
Di
→G(

xt , yt , bt) − Di
→(

xt , yt , bt)
]
−
[
Di
→G

(xs, ys, bs) − Di
→
(xs, ys, bs)

]
,

(6) 

PECt,s
i =Di

→VRS(
xt , yt , bt) − Di

→VRS
(xs, ys, bs), (7) 

SECt,s
i =

[
Di
→(

xt , yt , bt) − Di
→VRS(

xt , yt , bt)
]
−
[
Di
→
(xs, ys, bs)

− Di
→VRS

(xs, ys, bs)
]
, (8) 

where Di
→VRS(

xt , yt , bt) and Di
→VRS

(xs, ys, bs) are the DDFs for city i in years t 
and s, respectively, calculated using the VRS model mentioned in the 
previous subsection.

3.2. Model establishment and variable description

To test H1, based on the research by Cao (2020), this study employs a 
two-step empirical approach as follows. First, it estimates the distance 
threshold for spillovers, which involves identifying the geographic range 
within which non-pilot cities are affected by LCCPs. Using overall Chi-
nese city-level data, we utilize a time-varying DID model because the 
pilot cities were not exposed to the regulations at the same time. 
Compared to SDID, traditional DID can refine spillovers to non-pilot 

cities. The specific model is as follows: 

GTFPit =α + β0DIDit +
∑400

50
δsDs

it + λZit + μi + vt + εit (9) 

where i represents 283 cities, and 69 pilot cities are in the treatment 
group,1 while 214 cities are in the control group. s represents different 
distance intervals within 400 km, and 50 km is the attenuation distance. 
Specifically, s=(0,50], (50,100], (100,150], (150,200], (200,250], 
(250,300], (300,350], (350,400]. Ds

it is a interaction term of the city and 
time dummy variables, and we construct eight Ds

it according to s. Taking 
s=(0,50] as an example, if there is a pilot city within 50 km of city i, then 
D0-50

it takes the value of 1 after implementing the LCCP policy and 
0 otherwise. DIDit is a dummy variable set to 1 when the LCCP policy is 
implemented in year t by city i, and 0 otherwise. The dependent variable 
GTFPit is described in Section 3.1. Zit contains all control variables, and vt 
is the year fixed effect that captures all time-varying factors. μi is the 
individual fixed effect that captures all variables that change with the 
city but are time-invariant. εit is the error term.

Second, we estimate the spillover effects of LCCPs. More specifically, 
our focus is on non-pilot cities, and we consider the spillover shock as a 
“quasi-natural experiment.” In the DID model, non-pilot cities within a 
certain distance are in the treatment group and those beyond the certain 
distance are in the control group. The analysis compares the differences 
in GTFP before and after the spillover shock between non-pilot cities 
exposed to the spillover shock and those that were not. The specific 
model is as follows: 

GTFPjt = α1 + β1DIDs
jt + γZjt + μj + vt + εjt (10) 

where j represents 214 non-pilot cities, and 70 cities are in the treatment 
group, while 144 cities are in the control group. DIDs

jt is a spillover 
dummy that takes the value of 1 when non-pilot city j is subject to 
LCCPs’ spillover in year t and 0 otherwise. The other variables are the 
same as in (9); the only difference is that the study in (10) is for non-pilot 
city j.

3.3. Variables and data

3.3.1. Dependent variable
In line with previous studies, input-output data for GTFP growth 

estimation were constructed as follows (Song et al., 2018a; Xia and Xu, 
2020; Xie et al., 2021). The three inputs are capital stock, labor, and 
energy consumption, and the two outputs are GDP (desirable output) 
and carbon emissions (undesirable output). For the input variables, the 
labor force data were based on the annual total number of employees in 
a city. According to Zhang et al. (2004), the perpetual inventory method 
is used to calculate capital stock: Kt = It+(1-δ)⋅Κt-1, in which Κt-1 and Kt 
are capital stock in year t and t-1. It is added fixed asset investment. δ is 
the depreciation rate of fixed assets, defined as 9.6% (Zhang, 2008). Our 
energy consumption data were based on the total electricity consump-
tion of prefecture-level cities because of a lack of prefecture-level energy 
consumption data (Cheng et al., 2019). The desirable output is the GDP, 
whereas the undesirable output is the carbon emissions of each city.

3.3.2. Independent variables
As previously mentioned, the core independent variable is the DID 

variable, defined as the LCCPs spillover shock. The second phase batch 
was scheduled for December 2012. Considering the time lag of the 
policy’s effects, this study regards 2013 as the actual year of 

1 Based on the definition of city in this paper (municipalities and prefecture- 
level cities) and the availability of statistical data (there are no statistics for 
Tibet Autonomous Region, and Lhasa City is not included), 69 cities were 
selected as pilot cities.
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implementation.
Furthermore, this study incorporates two types of control variables. 

One consists of the economic variable, including the city’s GDP per 
capita level (pergdp), economic openness level (open), fixed-asset in-
vestment (fixed), and fiscal decentralization (fiscal). The level of eco-
nomic development (pergdp) is positively associated with productivity 
(Liu and Xin, 2019). Research on the impact of trade (open) on GTFP 
growth is inconclusive. The pollution haven hypothesis suggests that lax 
environmental regulations can lead to low-quality FDI and significant 
large-scale emissions, resulting in lower productivity efficiency (Cole, 
2004). However, the pollution halo hypothesis argues that FDI can lead 
to technology spillover effects in host countries, leading to increased 
productivity efficiency (Antweiler et al., 2001). Given these opposing 
effects, its impact of trade on the non-pilot cities’ GTFP growth remains 
ambiguous. Fixed-asset investment (fixed) is crucial for green develop-
ment, as increasing investment in the green activities can promote 
high-quality development (Jin and Han, 2021). Logarithmic form was 
used for fixed. Fiscal decentralization (fiscal) reflects authorities’ 
financial autonomy. A higher level of fiscal decentralization indicates 
that cities have greater authority to implement green development. It is 
calculated as fdc/(fdn + fdp + fdc), where fdn, fdp, and fdc represent 
budgetary expenditure per capita at the national, provincial, and city 
levels.

The second category is related to social development and includes 
urban population density (popd), urbanization (urban) and education 
level (educ). Population density (density) is the ratio of the city’s pop-
ulation to its administrative land area. According to previous studies, 
population density has a dual effect on GTFP. On one hand, population 
clustering can lead to scale effects and enhance productivity through 
competition, exchange, and sharing activities, thereby bringing eco-
nomic benefits (Kumar, 2006). On the other hand, population agglom-
eration increases energy consumption and emissions (Ohlan, 2015). 
Urbanization (urban) was measured as the ratio of the urban population 
to the total city population. This reflects labor force supply, influencing 
productivity (Chen et al., 2020). Regarding education level (educ), Jin 
et al. (2019) confirmed that increasing the level of education can 
accumulate high-level human capital and drive breakthroughs in green 
technology that boost green development. The total number of teachers 
enrolled in regular secondary and primary schools was displayed in 
logarithmic form to measure a city’s educational level.

3.3.3. Mediation variable
There are three types of mechanism effects mentioned above.
The first mechanism is the innovation effect. According to Section 

2.2, innovation flow manifests in scientific and R&D capital flow and 
R&D labor flow.

The gravity model was used to measure the factor flow based on Bai 
et al.(2017). It includes three parts: the evaluated factor (such as R&D 
capital and labor factors), the gravitational variables driving factor 
mobility, and the distance between regions. Regarding to the flow of 
capital, average corporate profitability and the level of financial market 
development level are essential drivers (Tellis et al., 2009). R&D capital 
flow, measured in a gravitational model format is given by Eq. (11): 

cfloijt = ln Cit × ln
⃒
⃒
⃒Profjt − Profit

⃒
⃒
⃒× ln

⃒
⃒Markjt − Markit

⃒
⃒× R− 2

ij (11) 

where cfloij represents the quantity of R&D capital flow between cities i 
and j, and Ci represents R&D investment in city i. We employed the 
government’s science and technology investment stock in city i 
following Bai et al. (2017). Profi represents the average profit level of 
enterprises above the designated size in city i and Marki represents city 
i’s green market development index calculated by Wang and Wang 
(2021) and Wang and Wang (2023). Rij is the distance from the center of 
the city, calculated using ArcGIS. Therefore, R&D capital flow in year t 
in city i is expressed as follows: 

cfloit =
∑n

j=1
cfloijt (12) 

According to Feng et al. (2023), wages and house prices are force 
variables for the labor factor flow. If the wage level in city i is higher or 
the house price level is lower than that in city j, then R&D labor flows in 
city j will flow to city i under the “utility maximization” theory. Ac-
cording to the gravity model, R&D labor flow is measured as follows: 

lfloij = ln Li × ln
⃒
⃒Wagej − Wagei

⃒
⃒× ln

⃒
⃒
⃒Hpj − Hpi

⃒
⃒
⃒× R− 2

ij (13) 

where lfloij represents the quantity of R&D labor flow between cities i 
and j, and Li represents the number of R&D laborers in city i. Due to the 
lack of city-level R&D labor data, this study uses the tertiary labor force. 
Wagei represents the average wage level of urban employees in city i, and 
Hpi represents city i’s housing price, measured by the average selling 
price of residential buildings. Rij is the distance from the center of the 
city, calculated using ArcGIS. Therefore, the R&D labor flow in a certain 
year in city i can be expressed as follows: 

lfloit =
∑n

j=1
lfloijt (14) 

The second mechanism is the industrial structure effect. Upgrading 
industrial structures can replace extensive production modes with high 
energy consumption and high pollution with high added value, high 
income, and low pollution, thereby promoting GTFP. The industrial 
structure (stru), expressed by the proportion of the secondary industry’s 
added value in the cities’ GDP, represents the structure effect.

The third mechanism is the learning effect. One of the most 
straightforward ways to learn from peers with high environmental 
performance is to enact similar policy documents (Stone, 2001). We 
used text analysis methods to measure the learning effect of green 
development. Specifically, we collected several keywords associated 
with green growth in the local government’s official annual government 
work report, including low carbon, green development, carbon emis-
sions, and energy consumption. Generally, the more frequently these 
words are used, the greater the importance attached to green develop-
ment by local governments. Second, we take the maximum value of the 
green development word frequency in a province as a benchmark and 
compare it to each city’s green development word frequency. This is 
because each province is viewed as a distinct political market in which 
mayors or municipal party secretaries compete, learning from the reg-
ulatory behavior of their provincial competitors. The smaller the dif-
ference, the greater the learning effect, and the more effective it is to 
learn from your competitors. 

learningjt =wordfrejt − wordfrepjt (15) 

3.3.4. Data source
Cities in this study include municipalities and prefectural-level cities. 

Due to the lack of statistical data, the sample consists of 283 cities, 4 
provincial capitals, and 279 prefecture-level cities between 2004 and 
2020. The original socioeconomic data were obtained from the China 
City Statistical Yearbook, China Energy Statistical Yearbook, the annual 
statistical bulletins of each city, and the CEIC database. The Emissions 
Database for Global Atmospheric Research (EDGAR) measures carbon 
emissions for cities. Data on the frequency of policy-related words in city 
government work reports were manually collected. Green market 
development index data were obtained from Wang and Wang (2023) in 
2023. Interpolation was used to handle missing data in this study, 
resulting in balanced panel data. All prices in this study are adjusted for 
inflation using the year 2000 as the base year. The descriptive statistics 
for each variable are presented in Table 1.
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4. Results

4.1. GTFP growth

Fig. 3 displays the average trend of GTFP growth for the 283 cities 
from 2004 to 2020, along with the spatial distribution of GTFP growth 
for the three LCCP policies’ start years. The darker the colour, the higher 

the level of green development. GTFP growth values above 0 indicate 
progress, zero indicates GTFP stagnation, whereas values below 0 indi-
cate a decrease in GTFP. Temporally, GTFP growth is generally negative 
and fluctuates upward, indicating an overall lack of growth over the 17- 
year period, whereas the extent of negative growth decreased. This 
result is consistent with the findings of He et al. (2021). Specifically, 
from 2004 to 2010, there were sharp fluctuations, with decreases 

Table 1 
Descriptive statistics of variables in 2004–2020.

Variable Definition Full sample Treatment groupa Control group

Obs Mean Std. 
Dev.

Obs Mean Std. 
Dev.

Obs Mean Std. 
Dev.

Independent variable
GTFP Green total factor productivity of cities 4811 − 0.00 0.06 1252 − 0.00 0.05 3079 − 0.01 0.06
Dependent variable
pergdp Per capita real GDP(Yuan/people) 4811 8450 8604 1252 10008.02 6999.34 3079 6948.20 7691.95
open Total annual import and export transactions account for GDP(%) 4811 19.73 34.34 1252 30.06 46.53 3079 12.50 19.47
fixed Fixed-asset investment (109 Yuan) 4811 22.74 24.59 1252 24.89 22.30 3079 17.77 16.94
fiscal Fiscal decentralization, the ratio of urban fiscal expenditure to total 

fiscal expenditure (%)
4811 0.23 0.08 1252 0.24 0.08 3079 0.21 0.07

density Population density(100 people/km2) 4811 4.33 3.45 1252 5.29 3.02 3079 3.74 3.29
urban Ratio of urban population to the total population(%) 4811 52.08 16.39 1252 55.62 14.76 3079 48.27 15.50
educ Total number of teachers in regular institutional of higher education, 

regular secondary schools and primary school(103 people)
4811 40.49 33.13 1252 38.51 24.34 3079 36.59 24.28

Mediating variables
cflo Mobility of technology capital (see E.q12) 4811 0.12 0.10 1252 0.17 0.13 3079 0.10 0.07
lflo Mobility of high-skilled labor (see Eq. (14)) 4811 0.22 0.15 1252 0.30 0.16 3079 0.18 0.11
stru Added value of secondary industry/added value of three major 

industries (%)
4811 0.47 0.11 1252 0.50 0.10 3079 0.46 0.12

learn Difference in the word frequency of green development 4811 10.46 9.75 1252 10.02 8.93 3079 10.80 10.04

a ″Treatment group” refers to the non-pilot cities within a certain distance in the in Eq. (10).

Fig. 3. Spatio-temporal variations of GTFP growth over China from 2004 to 2020.
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observed in 2005,2009 and 2010. This occurred due to the long-term 
extensive development mode and the 2008 global financial crisis 
when China intensified its investment and increased employment, thus, 
resulting in inefficient production conditions that did not substantially 
improve. Notably, the average GTFP growth has increased since 2014, 
when the LCCP was enacted, particularly in 2017 and 2019.

Furthermore, we conducted a visualization of the pattern of GTFP 
growth in Chinese cities for three policy years: 2010, 2013, and 2017. 
Compared to 2010 and 2013, GTFP increased in 2017. The number of 
cities with GTFP growth above zero rose from 91 in 2010 to 139 in 2013 
and 196 in 2017. Notably, the growth trend of GTFP varies from city to 
city. First, when compared to the eastern region (-0.001), cities in the 
middle (-0.005), western (-0.002), and northeastern (-0.002) regions 
experienced lower average GTFP growth over the analysis period. Sec-
ond, regional differences in GTFP growth has narrowed: in 2010, the 
average growth gap between the eastern and northeastern regions was 
0.025; in 2020, the gap narrowed to 0.012.

4.2. Results for the benchmark model

As mentioned in Section 3.2, we first need to estimate the distance 
threshold for LCCPs’ spillover. Fig. 4 plots the coefficient of δs and its 
95% confidence interval in Eq. (9). The horizontal axis represents 
different distance intervals. For example, (50–100] represents the 
spillover effect of LCCPs on neighboring cities within 50–100 km. As 
shown in Fig. 4, we found a significantly positive spillover effect of 
LCCPs within the distance intervals of (0–50] and (50–100], implying 
that LCCPs can have a positive impact on neighboring cities within 100 
km. Therefore, this study uses 100 km as the threshold for studying 
spillover effects.

Second, we estimated the spillover effect. In Table 2, column (1) 
reports the results, including only the core DIDs variable, and column (2) 
presents the benchmark regression results. Columns (3)–(5) list the de-
compositions of the GLPI. The effects of the fixed year and city are 
controlled for in all columns.

In Columns (1) and (2), the coefficients of DIDs suggest a significant 
positive correlation between the spillover effect and neighboring non- 
pilot cities’ GTFP growth. On average, neighboring non-pilot cities’ 
green development can benefit from the LCCP policy and gain annual 
GTFP growth of 1.43%–1.50%, compared to non-pilot cities over a 100- 
km range, and the results support Hypothesis 1.

Columns (3)–(5) of Table 2 report the results for the three sources of 
GTFP growth (BPC, PEC and SEC). Columns (4) show that the LCCP 
policy has a positive impact on the PEC index. In other words, the LCCP 
contributed to the GTFP growth of nearby (within 100 km) non-pilot 
cities through the efficiency catch-up effect. However, there was no 

statistically significant relationship between the treatment group’s LCCP 
and BPC index and SEC index. This indicates that the LCCP policy does 
not contribute to GTFP growth by shifting frontier and optimizing the 
production scale of neighboring non-pilot cities.

Cities’ socioeconomic characteristics also influence GTFP growth. In 
column (2), “pergdp” helps cities improve their green productivity, 
which aligns with theoretical expectations. “open” is statistically sig-
nificant and negative, and a unit increase in trade can cause a 0.02% 
decrease in cities’ GTFP growth, verifying the pollution haven hypoth-
esis. However, “fixed” is not conducive to cities’ GTFP growth; a unit 
increase in fixed investment can cause a 2.32% decrease in GTFP 
growth. This is partly because investments in economic development 
crowd out investments in environmental governance, thereby not 
contributing to green development (Bovenberg and Smulders, 1996). As 
for “density,” the coefficient is positive at the 1% significance level, 
proving that scale effects of the population are beneficial to the increase 
in GTFP. In addition, a larger population may stimulate economic ac-
tivities, thus increasing the GTFP growth. The education benefits GTFP 
growth as it reflects the quality of cities’ human capital, and higher 
education tends to be high-tech in the development mode. The co-
efficients of the remaining control variables are not significant, indi-
cating that these variables are not the core elements affecting the GTFP 
in this sample. The results shown in the study have used clustered 
standard errors in all regressions.

4.3. Robust test

4.3.1. Parallel trend
An essential precondition for consistently estimating the DID model 

is that the GTFP growth in the treatment and control groups would have 
similar time trends before the spillover shock. In other words, if a par-
allel trend holds, the coefficients of βk are insignificant before a spillover 
shock. Following Beck et al. (2010) and Wang (2013), we estimate the 
dynamics of spillover effects as follows: 

GTFPjt = β0 +
∑k=+5

k=− 5
βkTreatj × Timet0+k + γZXj,t + μj + λt + εj,t (16) 

where Timet0+k is a series of dummy variables that take the value 1 when 
the year equals t0+k; otherwise, it takes the value 0. t0 represents the Fig. 4. Spatial scope of policy spillovers from LCCPs.

Table 2 
Regression results.

(1) (2) (3) (4) (5)

GTFP 
growth

GTFP 
growth

BPC PEC SEC

DIDs 0.0150*** 0.0143*** 0.0018 0.0085* -0.0023
 (0.0042) (0.0042) (0.0039) (0.0051) (0.0027)
lnpergdp  0.0519*** -0.0253*** 0.0646*** 0.0227
  (0.0172) (0.0087) (0.0134) (0.0163)
open  -0.0002** -0.0000 -0.0001 -0.0001
  (0.0001) (0.0001) (0.0001) (0.0001)
lnfixed  -0.0232*** 0.0081*** -0.0269*** -0.0031
  (0.0038) (0.0031) (0.0046) (0.0046)
fiscal  0.0622 0.0170 -0.0279 0.0946*
  (0.0458) (0.0351) (0.0535) (0.0495)
density  0.0056*** -0.0022** 0.0079*** 0.0011
  (0.0014) (0.0011) (0.0020) (0.0013)
urban  0.0002 0.0006** -0.0002 − 0.0002
  (0.0003) (0.0002) (0.0003) (0.0002)
lneduc  0.0165** 0.0109 0.0159** -0.0095
  (0.0068) (0.0089) (0.0078) (0.0113)
_cons − 0.0228*** -0.4520*** 0.0071 -0.4929*** -0.0858
 (0.0004) (0.1581) (0.1199) (0.1418) (0.1728)

N 4331 4331 4331 4331 4331
R2 0.164 0.185 0.244 0.071 0.050

Note: *, **, and *** are significant at the levels of 10%, 5%, and 1%, 
respectively.
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spillover year for each city (i.e., 2010 for the first spillover year and 
2013 for the second spillover year). In the benchmark models, Treati 
equals 1 if the city is included in the treatment group and 0 otherwise. Zit 
is the control variable. μj is the city fixed effect, λt is the year effect, and 
εit is the error term. Fig. 5 shows the results at 95% confidence intervals. 
First, it demonstrates no systematic difference between the pre-trends of 
treated and untreated cities. This is in line with the expectation that 
policy spillover coefficients are not significantly different from zero in 
the five years prior to the pilot. Second, the spillover effect remained 
positive and significant three years after the pilot year. One possible 
explanation is that the spillover effect of LCCP is dependent on how 
responsive non-pilot cities are.

4.3.2. Placebo test
Pan et al. (2022) conducted a robustness test using a counterfactual 

method. It involved randomly specifying a group of false treatment 
groups in the 283 sample cities and selecting the spillover year for these 
cities to obtain a fictitious DID variable. This process was repeated 1000 
times, with 69 cities randomly selected each time as the treatment 
group, resulting in 1000 simulated spillover effects. If the simulated 
effects are not clustered around zero and its nearby intervals, the results 
may be influenced by unobserved factors (JG Slusky, 2017). Fig. 6 dis-
plays the kernel density of false coefficient β1 and the distribution of the 
p-values. It reveals that 95.8% of the confidence intervals for false 
spillover effects contain zero, indicating weaker significance (90.7% of 
the p-values are over 0.1). There is a significant difference between the 
false spillover effects and the real spillover effects of LCCPs (red vertical 
line). Consequently, the empirical results of this study are unlikely to 
have been affected by random factors.

4.3.3. PSM-DID
Pilot cities may be selected based on economic factors such as their 

level of development and industrial base. To address sample selection 
bias, a propensity score matching DID (PSM-DID) method is employed to 
re-evaluate the regression results presented in Eq. (10). It aims to reduce 
sample selection bias (Heckman et al., 1997) by matching treatment 
cities with control cities possessing similar characteristics based on 
observable factors. Logit regression calculates the propensity matching 
scores for cities using covariates such as the lnpergdp, open, fixed, fiscal, 
density, urban, and lneduc covariates. The control group is formed by 
employing various methods, including conducting radius within a 
caliper equal to 0.05, nearest-neighbor (1:1) matching, kernel matching, 
and local linear regression matching to minimize the mean square error. 
After matching, the study’s balance criteria are met as a standardized 
percentage bias of less than 10% is observed in the control variables. 
Furthermore, in Table 3, the coefficients of explanatory variables for the 
DIDs are consistently positive and significant at the 5% level, even after 
controlling for exogenous variables, which supports the baseline 

regression results.

4.3.4. Considering other factors

(1) Interference from other pilot cities

It is important to exclude the effects of other policies during the same 
period, such as the Smart City Pilot in 2012 and the Ecological Civili-
zation Cities Pilot in 2013 (Cheng et al., 2022). To control for the effects 
of these two policies at the city level, we have developed additional 
interaction terms for these two policies. The estimated coefficient for β1 
is still significantly positive, while the coefficients for the Smart City 
Pilot and the Ecological Civilization Cities Pilot are insignificant, as 
shown in Columns (1) and (2) of Table 4. This indicates that the two 
pilots do not affect our results.

(2) Policies’ effects at the province level

The baseline model incorporates a province-year fixed effect to 
further control for any potential factors and eliminates all possible 
province-level policy shocks during the same period. Column (3) in 
Table 4 indicates that coefficient of β1 remains positive and statistically 
significant.

Fig. 5. Parallel trend test of the spillover effect.

Fig. 6. Placebo test. 
Notes: According to Eq. (10), the coefficients and p-values of the average 
treatment effects were plotted. The average treatment effect and p-value of the 
simulation are represented on the two axes. The kernel density of this estimate 
is indicated in green line. Blue dots represent the simulation p-values. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.)

Table 3 
Robust test results of PSM-DID.

(1) (2) (3) (4)

radius nearest-neighbor kernel local linear

DIDs 0.0163** 0.0211*** 0.0204*** 0.0162***
 (0.0062) (0.0055) (0.0058) (0.0059)
Control Yes Yes Yes Yes
Year effect Yes Yes Yes Yes
City effect Yes Yes Yes Yes

R2 0.1997 0.2186 0.2057 0.2050
N 1700 2176 1870 2278

Note: (1), (2), (3), and (4) report the results of the radius, nearest-neighbor, 
kernel, and local linear regression matching methods, respectively. *, **, and 
*** are significant at the levels of 10%, 5%, and 1%, respectively.
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(3) Exclude pilot cities

Pilot cities are also included in the benchmark measurement. In other 
words, the spillover effects of LCCPs in the benchmark results were 
captured when pilot cities did not participate in the pilot projects. Once 
a city joined the pilot, the related data were deleted from the sample 
because they were not in the treatment or control groups. For example, 
Beijing, China’s capital, was not part of the second batch of LCCPs, but it 
was affected by spillovers from Tianjin, the pilot city of the first batch. 
As Beijing became a second-batch pilot city for the LCCP after 2013, the 
related data from Beijing were deleted from our sample. Column (4) of 
Table 4 excludes pilot cities from the sample to mitigate the impacts on 
pilot cities. The results still demonstrate that LCCPs significantly influ-
ence neighboring GTFP growth.

The results still demonstrate that LCCPs significantly influence 
neighboring GTFP growth.

(4) Spatial-DID model

In this study, the Spatial-DID model was constructed based on the 
spatial Durbin model (SDM) as outlined by LeSage and Pace (2008): 

GTFPit = α0 + ρ1

∑n

j=1
WijGTFPjt + α1DIDit + ρ2

∑n

j=1
WijDIDjt + Zitα2

+
∑n

j=1
WijZjtρ3 + μj + vt + εjt (17) 

Where Wij is the row-standardized spatial weight matrix, α1 and ρ2 
captures the direct and spillover effects, respectively. 

∑n
j = 1WijGTFPjt is 

the interpreted variables’ spatial lagged term, and ρ1 is the spatial 
autoregressive coefficient. Eq. (17) also considers the control variables 
and their spatially lagged term. μi and νt represent spatial and time fixed 
effects, respectively. εit is the random error term.

The results of Wald test and LR test are all significant at the level of 
10%, indicating that the SDM is more suitable. The coefficient of the 
spatial lag term W ×GTFP (ρ1) in Table 4 is significantly greater than 0, 
indicating that green development still has a strong spatial correlation 
even when controlling for other factors. Meanwhile, the coefficient of 
spatial explanatory variable (ρ2) is positive at the level of 5% signifi-
cance level, confirming the spillover effect in our base model. However, 
the coefficient of direct effect did is not significant which is exceeded our 
expectations.

(5) Staggered DID model

The LCCPs were implemented in three batches in 2010, 2013, and 
2017. Their goals differed, indicating that LCCPs had varying impacts 
over time. Considering that the two-way fixed effects estimation cannot 
distinguish heterogeneous effects across different periods, the staggered 
DID model is adopted to demonstrate the robustness of the benchmark 
model(Hou et al., 2023; Wang et al., 2023b). This method controls for 
decomposable time-varying confounders in a panel data setting and 
reduces the estimation errors caused by heterogeneous treatment effects 
by including interaction fixed effects. The F-test indicates that the matrix 
completion estimator method is preferable to the fixed-effects counter-
factual and interactive fixed effects counterfactual methods. Fig. 7
shows that the LCCP spillover effect worked for three years after the 
pilot, confirming the robustness of the benchmark model.

(6) other intervals

To justify the choice of the ‘50 km’ interval, we consider the ‘100 km’ 
interval and test whether the policy (0, 100], (100, 200], (200, 300], 
(300, 400] appears robust to spillover effects. Fig. 8 shows the study 
results, where policy spillovers are significantly positively correlated 
with GTFP growth in non-pilot cities within 100 km, but not beyond 100 
km. The results are consistent with those for the 50-km interval. The 
statistical analysis also confirms the validity of the 100 km’ threshold 
identified in the first step of the empirical study.

5. Discussion

5.1. Mechanism analysis

To determine how the LCCP policy can impact the GTFP growth of 
neighboring non-pilot cities, this study constructs the following model to 
identify the mechanisms outlined in the research hypothesis: 

Table 4 
Other robust test results.

Smart city ecological 
city

Province- 
year fixed 
effect

Drop pilot 
city

SDID 
model

DIDs 0.0145*** 0.0149*** 0.0155*** 0.0159*** 
 (0.0041) (0.0041) (0.0043) (0.0044) 
DIDsmart 0.0044    
 (0.0035)    
DIDecological  -0.0006   
  (0.0039)   
α     -0.0058
     (0.0036)
ρ1     0.1161***
     (0.0289)
ρ2     0.0185**
     (0.0094)
Wald test 

for SAR
    3.87**

Wald test 
for SEM

    3.59*

LR test for 
SAR

    17.14**

LR test for 
SEM

    16.02**

Province- 
year fixed 
effect

  Yes  

Observation 4331 4331 4275 3655 4811
R2 0.175 0.175 0.326 0.179 0.008
Control Yes Yes Yes Yes Yes
Individual 

effect
Yes Yes Yes Yes Yes

Time effect Yes Yes Yes Yes Yes

Note: *, **, and *** are significant at the levels of 10%, 5%, and 1%, 
respectively.

Fig. 7. Estimated results of staggered DID model.
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Mjt =α2 + β2DIDjt + γZjt + μj + vt + εjt (18) 

GTFPjt =α3 + ηMjt+β3DIDs
jt + γ1Zjt + μj + vt + εjt (19) 

where Mjt represents three mediation variables. This study considers the 
three mechanistic variables mentioned in Section 2.2: innovation, 
structural, and learning effects. The remaining variables are consistent 
with those in Eq. (10).

Fig. 9 shows a schematic of this mechanism. Fig. 9a shows that the 
spillover’s impact on the R&D capital flow is 0.0412 at the 1% signifi-
cance level, indicating that the development of LCCPs is associated with 
an increased spatial flow of capital factors in neighboring non-pilot 
cities and thus facilitates their GTFP. This is partly because the collab-
orative innovation and regional radiation effects optimize the allocation 
of high-tech capital resources and enhance the GTFP of the element flow 
region (Fang et al., 2022; Zhao et al., 2022). In addition, based on Eqs. 

(18) and (19), the capital flow effect on GTFP is marginally β2*η, which 
is 0.0013(0.0412*0.0313). This explains 9.02% (0.0013/0.0143) of the 
spillover’s total effect. For example, in 2024, Mang City’s mayor led a 
team to Suzhou City, a LCCP pilot city in Jiangsu Province. In order to 
attract green investment and high-knowledge talent, the mayor invited 
low-carbon companies to invest in Mang City and expand its cooperation 
capabilities. Regarding the R&D labor flow effect, Figure Fig. 9b shows 
no significant difference between the spillover effect of LCCPs and the 
labor flow in neighboring cities. In other words, LCCP carbon regulation 
has not led to a significant reallocation of talented labor. Compared with 
capital mobility, R&D labor flow is a longer-term process that in-
corporates more social factors, such as wages, house prices, education 
levels, and labor market demand. Additionally, R&D talent tends to 
move more frequently to low-carbon cities than non-pilot cities because 
of their vibrant economies and employment opportunities (Dou and Cui, 
2017). Nevertheless, we can also observe that local labor flow can 
promote GTFP growth (η = 0.0608, p-value≤0.05), which can explain 
1.40% ((0.0143–0.0141)/0.0143) of GTFP growth.

In fact, in the transfer of innovation factors, the market factors play a 
leading role, while governments act as catalysts, appropriately guiding 
the innovation flow through low-carbon policies. On one hand, inno-
vation theory suggests that markets demand higher returns on capital, 
which forces cities to invest in riskier projects in order to obtain capital 
from the capital market. In the low-carbon city pilot program, some 
financial instruments have been deployed such as green financial sub-
sidies and green credit to provide external financial support for green 
development. Some pilot cities combine with the regional economic 
development strategy, making the policy more effective by reallocating 
resources, and expanding the scope of policy influence. Therefore, non- 
pilot cities with financial constraints in innovation can access external 
financial support, easing the financial pressure and thus promoting 
innovation(Zhu and Lee, 2022). Carbon market trading is one such 
example. On the other hand, in construction of low-carbon cities, the 
market requires more high-skilled and high-knowledge staff (Hao et al., 
2021). Meanwhile, with the liberalization of national household regis-
tration systems and the development of regional integration and 

Fig. 8. Robust test of 100- kilometres intervals.

Fig. 9. Mechanism analysis a) R&D capital flow; b) R&D labor flow; c) structural effect; d) learning effect.
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digitalization, R&D staff are becoming increasingly able to move across 
administrative barriers and achieve cross-regional mobility, which has a 
positive impact on non-pilot regions as well.

No significant structure effects were observed in the GTFP growth of 
the surrounding non-pilot cities. A possible explanation might be that 
LCCPs cannot adjust the mature and consolidated industrial structure 
systems of non-pilot cities. Moreover, LCCPs emphasized a shift from 
extensive development to low-carbon, intensive development, and the 
decarbonization of the secondary sector did not result in a decline in 
output.

Finally, a spillover effect can also arise from the learning effect and 
peer imitation behavior. Fig. 9d presents the results of the learning ef-
fect. Firstly, the spillover effect of LCCPs on learning is -2.4907(p-val-
ue≤0.05), indicating that LCCPs can reduce the gap in policy-making 
between neighboring non-pilot cities and pioneers within the same 
province. In other words, a spillover effect can occur through learning 
from and imitating peers with stringent environmental governance in 
their province. Secondly, learning and GTFP growth are negatively 
correlated (η = -0.0002, p-value≤0.1), implying that the more they can 
learn from each other’s experiences, the smaller the gap in policy- 
making becomes, improving GTFP growth. Some researchers 
confirmed that learning mechanisms strengthen the interaction between 
local governments in urban environmental regulation and can improve 
environmental performance, which is consistent with our findings (Li 
et al., 2022; Xu et al., 2022). Generally, the learning effect amounts to 
3.48% of the total spillover effect.

For example, in 2023, officials from Dongguan City, a non-pilot city, 
visited Shenzhen’s Green and Low Carbon Industry Expo. By studying 
low-carbon product and technology applications, carbon-neutral inte-
grated policy solutions, and international green technologies and in-
novations, more innovative demonstrations will be learnt by non-pilot 
cities and applied to municipal offices and policy-making.

5.2. Heterogeneous analysis

LCCPs may have varying impacts on different cities (Chen and Wang, 
2022), and certain city characteristics may determine their roles in 
surrounding cities. This section primarily analyzes the heterogeneity in 
region, city scale, and resource endowment dimensions, see Eq. (20). 

GTFPjt =α1 + β1DIDs
jt × Characterjt + γZjt + μj + vt + εjt (20) 

First, there are 27 pilot cities in the eastern, 18 in the central, 20 in 
the western, and 4 in the northeastern regions, respectively. In other 
words, the spatial distribution of pilot cities was uneven. Studies have 
demonstrated that the location of pilot programs directly affects the 
success of reforms (Heilmann, 2008; Wang and Yang, 2021). This paper 
divides cities into four groups to explore regional spillover impacts. 
Fig. 10a illustrates the results of the heterogeneous tests across different 
regions. The results reveal that LCCPs only influence GTFP change in 
neighboring non-pilot cities in the eastern and middle regions, with a 
more pronounced effect in the eastern area (2.06%) than in the middle 
region (1.01%). However, the policy coefficients are insignificant, 
implying no spillover impact on the western and northeastern non-pilot 
cities. The difference between east-middle, east-west, east-northeast and 
middle- northeast was significant statistically. The above results due to 
the following reasons: cities in the eastern and central regions have 
stronger economic foundations and development visions in promoting 
low carbon development and optimizing energy structure. They are 
more adept at recognizing and absorbing advanced practices. However, 
cities in western and northeastern regions, tend to focus on economic 
growth, and authorities are less likely to promote low-carbon develop-
ment. Moreover, the result provides new guidelines for policy imple-
mentation in the western and northeastern regions, which should pay 
attention to the pilot site selection and increase policy promotion efforts.

Second, following Yao et al. (2020), we categorized city scales based 
on population size: those with less than 1 million residents as small 
cities, those with more than 5 million as large cities, and the rest as 
medium-sized cities. Fig. 10b displays the regression results. It appears 
that LCCP promotes GTFP growth in neighboring cities, in both large 
and medium-sized cities, while it works reversely in small-sized cities. 
There are significant differences between small-medium group and be-
tween small-large group. The reason may be that large-sized cities 
typically serve as the region’s central hubs, and have better ICT infra-
structure, more intensive linkages of economic activities, a higher level 
of resource allocation efficiency, making policy-making more respon-
sive. Moreover, the larger cities tend to have more competitive markets, 
making it easier to regulate enterprises and enforce stricter policies. As a 
result of controlling total CO2 emission control, large cities may shift 
high-carbon industries to smaller cities, making it challenging for 
smaller cities to optimize the industrial structures. However, in 
small-sized cities, urban development is relatively backward. There may 

Fig. 10. Heterogeneity analysis results of spillover effect. 
Note: The height of the histogram shows the mean of spillover effect coefficients. The black thick line indicates the between-group variance. The asterisks indicate the 
significance degree of the coefficients (***P < 0.010, **P < 0.050, *P < 0.100).
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be problems such as insufficient capital investment, low administrative 
efficiency, and imperfect infrastructure. As a result, the spillover effect is 
negative. Accordingly, when implementing the low-carbon city pilot 
policy, we should emphasize demonstrations in small-sized cities.

Given that the policy effects of LCCP may be influenced by resource 
endowment, we investigated the response of GTFP growth to policy 
spillovers from LCCPs in cities with varying levels of resource depen-
dence. According to the National Sustainable Development Plan for 
Resource-Based Cities (2013–2020), 115 prefecture-level cities are 
considered resource-based cities. Fig. 10c presents the regression results 
based on the urban resource endowment. At the 1% significance level, 
both resource-based cities and non-resource-based cities have benefited 
from the spillover effects of the LCCP policy. And there was no evidence 
of significant differences between two groups.

6. Conclusion and policy implications

This study evaluates the spillover effects of LCCPs on the green 
development of neighboring non-pilot cities. Using a panel dataset of 
283 Chinese cities from 2004 to 2020, this study examines the spillover 
effect and potential mechanisms of the LCCP in non-pilot cities that 
border pilot cities. Robust tests are conducted to ensure the validity of 
the benchmark results.

Our main conclusions are as follows. Firstly, implementing LCCPs 
can have a positive impact on GTFP growth; specifically, cities within 
100 km of low-carbon pilot cities experienced a growth of 0.0143 in 
their GTFP. Secondly, LCCPs affect neighboring non-pilot cities’ GTFP 
growth through two economic mechanisms: the innovation effect and 
policy-learning effect. Thirdly, heterogeneous influences are significant 
on GTFP growth; the spillover effect is more pronounced in eastern, 
middle, and large-sized cities.

We propose the following recommendations in light of the above 
findings. Firstly, the spillover effect or spatial correlation should be 
considered for overall policy evaluation and decision-making. In this 
study, the impact of the LCCP policy is not underestimated if the spill-
over effect is considered, thus enhancing the efficient allocation of po-
litical resources. Despite the importance of studying the direct effects in 
pilot cities, studies in non-pilot cities can provide practical insights into 
policy revisions. As the pilot program aims to explore replicable and 
practical development approaches, non-pilot cities do not have a 
competitive advantage in terms of their economic base, market mech-
anisms, or financial support, making reform diffusion more challenging. 
Spillovers enable us to anticipate broad policy effects. Therefore, in 
addition to incorporating the economic conditions and layouts of the 
pilot cities as described in LCCPs, the externalities of policy effects, such 
as spillover range, direction, and impact should also be considered in 
scientific research and policymaking. Secondly, a more equitable and 
differentiated strategy should be adopted for selecting the pilot cities. 
According to this study, the spillover effects vary significantly among 
cities in terms of region, and scale. This study provides a new perspec-
tive for site selection. It is important to consider interregional equity 
when selecting sites. For example, the numbers of pilot cities in the four 
regions were 27, 18, 20, and 4, representing 30.68%, 22.5%, 21.05%, 

and 11.76% of the total number of cities in the eastern, middle, western, 
and northeastern regions, respectively. The pilot cities were less densely 
distributed in the western and northeastern regions, which may account 
for the lack of apparent spillover effects. Therefore, more political re-
sources should be directed towards these regions. This problem is also 
prevalent in small cities. Thirdly, this study finds compelling evidence 
that the policy pilot significantly improves the GTFP of neighboring non- 
pilot cities through the innovation (technology capital flow and talented 
labor flow) and learning effects. Interregional innovation factor flows 
(R&D capital and labor factors) have significant spatial innovation ef-
fects. Therefore, breaking down regional barriers from pilot cities to 
non-pilot cities is suggested to promote the flow of innovation factors. 
For example, a more flexible hiring mechanism (part-time work across 
regions) could be adopted to strengthen high-tech talent sharing. 
Enhancing green financial systems, such as interregional green lending 
and bonds, is also encouraged. Fourthly, with the hypothesis of spillover 
effect in this study, we are able to provide countries with similar polit-
ical systems to China with new ideas for policy pilot. Furthermore, the 
spatial correlation between cities or regions allows other countries to 
take into account more complex relationships in emission reduction, 
particularly the scope and direction of this spatial correlation also de-
termines whether an emission reduction on a broader scale is successful 
or not.

Although this study contributes to examine the spillover effect of 
China’s LCCP both theoretically and practically, the limitations of the 
study and potential avenues for future research should be acknowl-
edged. Firstly, by 2020, as the successful pilots are gradually replicated 
nationwide along with other related policies, such as the COVID-19 
pandemic, the scope and magnitude of average policy spillovers 
require further research. Secondly, future research should analyze the 
transmission of the mechanism of the spillover effect more thoroughly 
than the mechanism described in this paper. Thirdly, the detailed 
assessment of the city’s low carbon practices using a case study 
approach is needed.
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Appendix 

A. List of Low-carbon City Pilot Programs

The first batch of low-carbon pilot regions: Guangdong Province, Liaoning Province, Hubei Province, Shaanxi Province, Yunnan Province and 
Tianjin Municipality, Chongqing Municipality, Shenzhen City, Xiamen City, Hangzhou City, Nanchang City, Guiyang City and Baoding City.

The second batch of low-carbon pilot areas: Hainan Province, Beijing Municipality, Shanghai Municipality, and Shijiazhuang City, Qinhuangdao 
City, Jincheng City, Hulunbeier City, Jilin City, Daxinganling region, Suzhou City, Huaian City, Zhenjiang City, Ningbo City, Wenzhou City, Chizhou 
City, Nanping City, Jingdezhen City, Ganzhou City, Qingdao City, Jiyuan County-level City, Wuhan City, Guangzhou City, Guilin City, Guangyuan 
City, Zunyi City, Kunming City, Yan’an City, Jinchang City, Urumqi City.
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The third batch of low-carbon pilot areas: Wuhai City, Shenyang City, Dalian City, Chaoyang City, Sunken County, Nanjing City, Changzhou City, 
Jiaxing City, Jinhua City, Quzhou City, Hefei City, Huaibei City, Huangshan City, Lu’an City, Xuancheng City, Sanming City, Gongqingcheng County- 
level City, Ji’an City, Fuzhou City, Jinan City, Yantai City, Weifang City, Changyang Tujia Autonomous County, Changsha City, Zhuzhou City, 
Xiangtan City, Chenzhou City, Zhongshan City, Liuzhou City, Sanya City, Qiongzhong Li and Miao Autonomous County, Chengdu City, Yuxi City, 
Pu’er City, Lhasa City, Ankang City, Lanzhou City, Dunhuang County-level City, Xining City, Yinchuan City, Wuzhong City, Changji County-level City, 
Yining County-level City, Hotan County-level City, and Aral City of the First Division.

B. Figure

Fig. B1. Temporal pattern of GTFP growth (Treatment group vs. Control group)
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